Note: the constants BI_RGB, BI_RLE8, and BI_RLE4 have the values 0, 1, and 2,

respectively.

===

Graphics File Formats

This topic describes the graphics-file formats used by the Microsoft Windows

operating system. Graphics files include bitmap files, icon-resource files,

and cursor-resource files.

Bitmap-File Formats

Windows bitmap files are stored in a device-independent bitmap (DIB) format

that allows Windows to display the bitmap on any type of display device. The

term "device independent" means that the bitmap specifies pixel color in a

form independent of the method used by a display to represent color. The

default filename extension of a Windows DIB file is .BMP.

Bitmap-File Structures

Each bitmap file contains a bitmap-file header, a bitmap-information header,

a color table, and an array of bytes that defines the bitmap bits. The file

has the following form:

BITMAPFILEHEADER bmfh;

BITMAPINFOHEADER bmih;

RGBQUAD aColors[];

BYTE aBitmapBits[];

The bitmap-file header contains information about the type, size, and layout

of a device-independent bitmap file. The header is defined as a

BITMAPFILEHEADER structure.

The bitmap-information header, defined as a BITMAPINFOHEADER structure,

specifies the dimensions, compression type, and color format for the bitmap.

The color table, defined as an array of RGBQUAD structures, contains as many

elements as there are colors in the bitmap. The color table is not present

for bitmaps with 24 color bits because each pixel is represented by 24-bit

red-green-blue (RGB) values in the actual bitmap data area. The colors in the

table should appear in order of importance. This helps a display driver

render a bitmap on a device that cannot display as many colors as there are

in the bitmap. If the DIB is in Windows version 3.0 or later format, the

driver can use the biClrImportant member of the BITMAPINFOHEADER structure to

determine which colors are important.

The BITMAPINFO structure can be used to represent a combined

bitmap-information header and color table. The bitmap bits, immediately

following the color table, consist of an array of BYTE values representing

consecutive rows, or "scan lines," of the bitmap. Each scan line consists of

consecutive bytes representing the pixels in the scan line, in left-to-right

order. The number of bytes representing a scan line depends on the color

format and the width, in pixels, of the bitmap. If necessary, a scan line

must be zero-padded to end on a 32-bit boundary. However, segment boundaries

can appear anywhere in the bitmap. The scan lines in the bitmap are stored

from bottom up. This means that the first byte in the array represents the

pixels in the lower-left corner of the bitmap and the last byte represents

the pixels in the upper-right corner.

The biBitCount member of the BITMAPINFOHEADER structure determines the number

of bits that define each pixel and the maximum number of colors in the

bitmap. These members can have any of the following values:

Value
Meaning

1
Bitmap is monochrome and the color table contains two entries. Each

bit in the bitmap array represents a pixel. If the bit is clear, the pixel is

displayed with the color of the first entry in the color table. If the bit is

set, the pixel has the color of the second entry in the table.

4
Bitmap has a maximum of 16 colors. Each pixel in the bitmap is

represented by a 4-bit index into the color table. For example, if the first

byte in the bitmap is 0x1F, the byte represents two pixels. The first pixel

contains the color in the second table entry, and the second pixel contains

the color in the sixteenth table entry.

8
Bitmap has a maximum of 256 colors. Each pixel in the bitmap is

represented by a 1-byte index into the color table. For example, if the first

byte in the bitmap is 0x1F, the first pixel has the color of the

thirty-second table entry.

24
Bitmap has a maximum of 2^24 colors. The bmiColors (or bmciColors)

member is NULL, and each 3-byte sequence in the bitmap array represents the

relative intensities of red, green, and blue, respectively, for a pixel.

The biClrUsed member of the BITMAPINFOHEADER structure specifies the number

of color indexes in the color table actually used by the bitmap. If the

biClrUsed member is set to zero, the bitmap uses the maximum number of colors

corresponding to the value of the biBitCount member. An alternative form of

bitmap file uses the BITMAPCOREINFO, BITMAPCOREHEADER, and RGBTRIPLE

structures.

Bitmap Compression

Windows versions 3.0 and later support run-length encoded (RLE) formats for

compressing bitmaps that use 4 bits per pixel and 8 bits per pixel.

Compression reduces the disk and memory storage required for a bitmap.

Compression of 8-Bits-per-Pixel Bitmaps

When the biCompression member of the BITMAPINFOHEADER structure is set to

BI_RLE8, the DIB is compressed using a run-length encoded format for a

256-color bitmap. This format uses two modes: encoded mode and absolute mode.

Both modes can occur anywhere throughout a single bitmap.

Encoded Mode

A unit of information in encoded mode consists of two bytes. The first byte

specifies the number of consecutive pixels to be drawn using the color index

contained in the second byte. The first byte of the pair can be set to zero

to indicate an escape that denotes the end of a line, the end of the bitmap,

or a delta. The interpretation of the escape depends on the value of the

second byte of the pair, which must be in the range 0x00 through 0x02.

Following are the meanings of the escape values that can be used in the

second byte:

Second byte
Meaning

0
End of line.

1
End of bitmap.

2
Delta. The two bytes following the escape contain unsigned values

indicating the horizontal and vertical offsets of the next pixel from the

current position.

Absolute Mode

Absolute mode is signaled by the first byte in the pair being set to zero and

the second byte to a value between 0x03 and 0xFF. The second byte represents

the number of bytes that follow, each of which contains the color index of a

single pixel. Each run must be aligned on a word boundary. Following is an

example of an 8-bit RLE bitmap (the two-digit hexadecimal values in the

second column represent a color index for a single pixel):

Compressed data

Expanded data

03 04

04 04 04

05 06

06 06 06 06 06

00 03 45 56 67 00
45 56 67

02 78

78 78

00 02 05 01

Move 5 right and 1 down

02 78

78 78

00 00

End of line

09 1E

1E 1E 1E 1E 1E 1E 1E 1E 1E

00 01

End of RLE bitmap

Compression of 4-Bits-per-Pixel Bitmaps

When the biCompression member of the BITMAPINFOHEADER structure is set to

BI_RLE4, the DIB is compressed using a run-length encoded format for a

16-color bitmap. This format uses two modes: encoded mode and absolute mode.

Encoded Mode

A unit of information in encoded mode consists of two bytes. The first byte

of the pair contains the number of pixels to be drawn using the color indexes

in the second byte.

The second byte contains two color indexes, one in its high-order nibble

(that is, its low-order 4 bits) and one in its low-order nibble.

The first pixel is drawn using the color specified by the high-order nibble,

the second is drawn using the color in the low-order nibble, the third is

drawn with the color in the high-order nibble, and so on, until all the

pixels specified by the first byte have been drawn.

The first byte of the pair can be set to zero to indicate an escape that

denotes the end of a line, the end of the bitmap, or a delta. The

interpretation of the escape depends on the value of the second byte of the

pair. In encoded mode, the second byte has a value in the range 0x00 through

0x02. The meaning of these values is the same as for a DIB with 8 bits per

pixel.

Absolute Mode

In absolute mode, the first byte contains zero, the second byte contains the

number of color indexes that follow, and subsequent bytes contain color

indexes in their high- and low-order nibbles, one color index for each pixel.

Each run must be aligned on a word boundary.

Following is an example of a 4-bit RLE bitmap (the one-digit hexadecimal

values in the second column represent a color index for a single pixel):

Compressed data

Expanded data

03 04

0 4 0

05 06

0 6 0 6 0

00 06 45 56 67 00
4 5 5 6 6 7

04 78

7 8 7 8

00 02 05 01

Move 5 right and 1 down

04 78

7 8 7 8

00 00

End of line

09 1E

1 E 1 E 1 E 1 E 1

00 01

End of RLE bitmap

Bitmap Example

The following example is a text dump of a 16-color bitmap (4 bits per pixel):

Win3DIBFile

 BitmapFileHeader

 Type 19778

 Size 3118

 Reserved1 0

 Reserved2 0

 OffsetBits 118

 BitmapInfoHeader

 Size 40

 Width 80

 Height 75

 Planes 1

 BitCount 4

 Compression 0

 SizeImage 3000

 XPelsPerMeter 0

 YPelsPerMeter 0

 ColorsUsed 16

 ColorsImportant 16

 Win3ColorTable

 Blue Green Red Unused

[00000000] 84 252 84 0

[00000001] 252 252 84 0

[00000002] 84 84 252 0

[00000003] 252 84 252 0

[00000004] 84 252 252 0

[00000005] 252 252 252 0

[00000006] 0 0 0 0

[00000007] 168 0 0 0

[00000008] 0 168 0 0

[00000009] 168 168 0 0

[0000000A] 0 0 168 0

[0000000B] 168 0 168 0

[0000000C] 0 168 168 0

[0000000D] 168 168 168 0

[0000000E] 84 84 84 0

[0000000F] 252 84 84 0

 Image

 .

 . Bitmap data

 .

Icon-Resource File Format

An icon-resource file contains image data for icons used by Windows

applications. The file consists of an icon directory identifying the number

and types of icon images in the file, plus one or more icon images. The

default filename extension for an icon-resource file is .ICO.

Icon Directory

Each icon-resource file starts with an icon directory. The icon directory,

defined as an ICONDIR structure, specifies the number of icons in the

resource and the dimensions and color format of each icon image. The ICONDIR

structure has the following form:

typedef struct ICONDIR {

 WORD idReserved;

 WORD idType;

 WORD idCount;

 ICONDIRENTRY idEntries[1];

} ICONHEADER;

Following are the members in the ICONDIR structure:

idReserved
Reserved; must be zero.

idType

Specifies the resource type. This member is set to 1.

idCount

Specifies the number of entries in the directory.

idEntries
Specifies an array of ICONDIRENTRY structures containing

information about individual icons. The idCount member specifies the number

of structures in the array.

The ICONDIRENTRY structure specifies the dimensions and color format for an

icon. The structure has the following form:

struct IconDirectoryEntry {

 BYTE bWidth;

 BYTE bHeight;

 BYTE bColorCount;

 BYTE bReserved;

 WORD wPlanes;

 WORD wBitCount;

 DWORD dwBytesInRes;

 DWORD dwImageOffset;

};

Following are the members in the ICONDIRENTRY structure:

bWidth

Specifies the width of the icon, in pixels. Acceptable values

are 16, 32, and 64.

bHeight

Specifies the height of the icon, in pixels. Acceptable

values are 16, 32, and 64.

bColorCount
Specifies the number of colors in the icon. Acceptable values

are 2, 8, and 16.

bReserved
Reserved; must be zero.

wPlanes

Specifies the number of color planes in the icon bitmap.

wBitCount
Specifies the number of bits in the icon bitmap.

dwBytesInRes
Specifies the size of the resource, in bytes.

dwImageOffset
Specifies the offset, in bytes, from the beginning of the

file to the icon image.

Icon Image

Each icon-resource file contains one icon image for each image identified in

the icon directory. An icon image consists of an icon-image header, a color

table, an XOR mask, and an AND mask. The icon image has the following form:

BITMAPINFOHEADER icHeader;

RGBQUAD icColors[];

BYTE icXOR[];

BYTE icAND[];

The icon-image header, defined as a BITMAPINFOHEADER structure, specifies the

dimensions and color format of the icon bitmap. Only the biSize through

biBitCount members and the biSizeImage member are used. All other members

(such as biCompression and biClrImportant) must be set to zero.

The color table, defined as an array of RGBQUAD structures, specifies the

colors used in the XOR mask. As with the color table in a bitmap file, the

biBitCount member in the icon-image header determines the number of elements

in the array. For more information about the color table, see Section 1.1,

"Bitmap-File Formats."

The XOR mask, immediately following the color table, is an array of BYTE

values representing consecutive rows of a bitmap. The bitmap defines the

basic shape and color of the icon image. As with the bitmap bits in a bitmap

file, the bitmap data in an icon-resource file is organized in scan lines,

with each byte representing one or more pixels, as defined by the color

format. For more information about these bitmap bits, see Section 1.1,

"Bitmap-File Formats."

The AND mask, immediately following the XOR mask, is an array of BYTE values,

representing a monochrome bitmap with the same width and height as the XOR

mask. The array is organized in scan lines, with each byte representing 8

pixels.

When Windows draws an icon, it uses the AND and XOR masks to combine the icon

image with the pixels already on the display surface. Windows first applies

the AND mask by using a bitwise AND operation; this preserves or removes

existing pixel color. Windows then applies the XOR mask by using a bitwise

XOR operation. This sets the final color for each pixel.

The following illustration shows the XOR and AND masks that create a

monochrome icon (measuring 8 pixels by 8 pixels) in the form of an uppercase

K:

Windows Icon Selection

Windows detects the resolution of the current display and matches it against

the width and height specified for each version of the icon image. If Windows

determines that there is an exact match between an icon image and the current

device, it uses the matching image. Otherwise, it selects the closest match

and stretches the image to the proper size.

If an icon-resource file contains more than one image for a particular

resolution, Windows uses the icon image that most closely matches the color

capabilities of the current display. If no image matches the device

capabilities exactly, Windows selects the image that has the greatest number

of colors without exceeding the number of display colors. If all images

exceed the color capabilities of the current display, Windows uses the icon

image with the least number of colors.

Cursor-Resource File Format

A cursor-resource file contains image data for cursors used by Windows

applications. The file consists of a cursor directory identifying the number

and types of cursor images in the file, plus one or more cursor images. The

default filename extension for a cursor-resource file is .CUR.

Cursor Directory

Each cursor-resource file starts with a cursor directory. The cursor

directory, defined as a CURSORDIR structure, specifies the number of cursors

in the file and the dimensions and color format of each cursor image. The

CURSORDIR structure has the following form:

typedef struct _CURSORDIR {

 WORD cdReserved;

 WORD cdType;

 WORD cdCount;

 CURSORDIRENTRY cdEntries[];

} CURSORDIR;

Following are the members in the CURSORDIR structure:

cdReserved
Reserved; must be zero.

cdType

Specifies the resource type. This member must be set to 2.

cdCount

Specifies the number of cursors in the file.

cdEntries
Specifies an array of CURSORDIRENTRY structures containing

information about individual cursors. The cdCount member specifies the number

of structures in the array.

A CURSORDIRENTRY structure specifies the dimensions and color format of a

cursor image. The structure has the following form:

typedef struct _CURSORDIRENTRY {

 BYTE bWidth;

 BYTE bHeight;

 BYTE bColorCount;

 BYTE bReserved;

 WORD wXHotspot;

 WORD wYHotspot;

 DWORD lBytesInRes;

 DWORD dwImageOffset;

} CURSORDIRENTRY;

Following are the members in the CURSORDIRENTRY structure:

bWidth

Specifies the width of the cursor, in pixels.

bHeight

Specifies the height of the cursor, in pixels.

bColorCount
Reserved; must be zero.

bReserved
Reserved; must be zero.

wXHotspot
Specifies the x-coordinate, in pixels, of the hot spot.

wYHotspot
Specifies the y-coordinate, in pixels, of the hot spot.

lBytesInRes
Specifies the size of the resource, in bytes.

dwImageOffset
Specifies the offset, in bytes, from the start of the file to

the cursor image.

Cursor Image

Each cursor-resource file contains one cursor image for each image identified

in the cursor directory. A cursor image consists of a cursor-image header, a

color table, an XOR mask, and an AND mask. The cursor image has the following

form:

BITMAPINFOHEADER crHeader;

RGBQUAD crColors[];

BYTE crXOR[];

BYTE crAND[];

The cursor hot spot is a single pixel in the cursor bitmap that Windows uses

to track the cursor. The crXHotspot and crYHotspot members specify the x- and

y-coordinates of the cursor hot spot. These coordinates are 16-bit integers.

The cursor-image header, defined as a BITMAPINFOHEADER structure, specifies

the dimensions and color format of the cursor bitmap. Only the biSize through

biBitCount members and the biSizeImage member are used. The biHeight member

specifies the combined height of the XOR and AND masks for the cursor. This

value is twice the height of the XOR mask. The biPlanes and biBitCount

members must be 1. All other members (such as biCompression and

biClrImportant) must be set to zero.

The color table, defined as an array of RGBQUAD structures, specifies the

colors used in the XOR mask. For a cursor image, the table contains exactly

two structures, since the biBitCount member in the cursor-image header is

always 1.

The XOR mask, immediately following the color table, is an array of BYTE

values representing consecutive rows of a bitmap. The bitmap defines the

basic shape and color of the cursor image. As with the bitmap bits in a

bitmap file, the bitmap data in a cursor-resource file is organized in scan

lines, with each byte representing one or more pixels, as defined by the

color format. For more information about these bitmap bits, see Section 1.1,

"Bitmap-File Formats."

The AND mask, immediately following the XOR mask, is an array of BYTE values

representing a monochrome bitmap with the same width and height as the XOR

mask. The array is organized in scan lines, with each byte representing 8

pixels.

When Windows draws a cursor, it uses the AND and XOR masks to combine the

cursor image with the pixels already on the display surface. Windows first

applies the AND mask by using a bitwise AND operation; this preserves or

removes existing pixel color. Window then applies the XOR mask by using a

bitwise XOR operation. This sets the final color for each pixel.

The following illustration shows the XOR and the AND masks that create a

cursor (measuring 8 pixels by 8 pixels) in the form of an arrow:

Following are the bit-mask values necessary to produce black, white,

inverted, and transparent results:

Pixel result
AND mask
XOR mask

Black

0

0

White

0

1

Transparent
1

0

Inverted
1

1

Windows Cursor Selection

If a cursor-resource file contains more than one cursor image, Windows

determines the best match for a particular display by examining the width and

height of the cursor images.

==

BITMAPFILEHEADER (3.0)

typedef struct tagBITMAPFILEHEADER { /* bmfh */

 UINT bfType;

 DWORD bfSize;

 UINT bfReserved1;

 UINT bfReserved2;

 DWORD bfOffBits;

} BITMAPFILEHEADER;

The BITMAPFILEHEADER structure contains information about the type, size, and

layout of a device-independent bitmap (DIB) file.

Member

Description

bfType

Specifies the type of file. This member must be BM.

bfSize

Specifies the size of the file, in bytes.

bfReserved1
Reserved; must be set to zero.

bfReserved2
Reserved; must be set to zero.

bfOffBits
Specifies the byte offset from the BITMAPFILEHEADER structure

to the actual bitmap data in the file.

Comments

A BITMAPINFO or BITMAPCOREINFO structure immediately follows the

BITMAPFILEHEADER structure in the DIB file.

See Also

BITMAPCOREINFO, BITMAPINFO

==

BITMAPINFO (3.0)

typedef struct tagBITMAPINFO { /* bmi */

 BITMAPINFOHEADER bmiHeader;

 RGBQUAD bmiColors[1];

} BITMAPINFO;

The BITMAPINFO structure fully defines the dimensions and color information

for a Windows 3.0 or later device-independent bitmap (DIB).

Member

Description

bmiHeader
Specifies a BITMAPINFOHEADER structure that contains

information about the dimensions and color format of a DIB.

bmiColors
Specifies an array of RGBQUAD structures that define the

colors in the bitmap.

Comments

A Windows 3.0 or later DIB consists of two distinct parts: a BITMAPINFO

structure, which describes the dimensions and colors of the bitmap, and an

array of bytes defining the pixels of the bitmap. The bits in the array are

packed together, but each scan line must be zero-padded to end on a LONG

boundary. Segment boundaries, however, can appear anywhere in the bitmap. The

origin of the bitmap is the lower-left corner.

The biBitCount member of the BITMAPINFOHEADER structure determines the number

of bits which define each pixel and the maximum number of colors in the

bitmap. This member may be set to any of the following values:

Value
Meaning

1
The bitmap is monochrome, and the bmciColors member must contain two

entries. Each bit in the bitmap array represents a pixel. If the bit is

clear, the pixel is displayed with the color of the first entry in the

bmciColors table. If the bit is set, the pixel has the color of the second

entry in the table.

4
The bitmap has a maximum of 16 colors, and the bmciColors member

contains 16 entries. Each pixel in the bitmap is represented by a four-bit

index into the color table.

For example, if the first byte in the bitmap is 0x1F, the byte represents two

pixels. The first pixel contains the color in the second table entry, and the

second pixel contains the color in the sixteenth table entry.

8
The bitmap has a maximum of 256 colors, and the bmciColors member

contains 256 entries. In this case, each byte in the array represents a

single pixel.

24
The bitmap has a maximum of 2^24 colors. The bmciColors member is

NULL, and each 3-byte sequence in the bitmap array represents the relative

intensities of red, green, and blue, respectively, of a pixel.

The biClrUsed member of the BITMAPINFOHEADER structure specifies the number

of color indexes in the color table actually used by the bitmap. If the

biClrUsed member is set to zero, the bitmap uses the maximum number of colors

corresponding to the value of the biBitCount member.

The colors in the bmiColors table should appear in order of importance.

Alternatively, for functions that use DIBs, the bmiColors member can be an

array of 16-bit unsigned integers that specify an index into the currently

realized logical palette instead of explicit RGB values. In this case, an

application using the bitmap must call DIB functions with the wUsage

parameter set to DIB_PAL_COLORS.

Note:
The bmiColors member should not contain palette indexes if the bitmap

is to be stored in a file or transferred to another application. Unless the

application uses the bitmap exclusively and under its complete control, the

bitmap color table should contain explicit RGB values.

See Also

BITMAPINFOHEADER, RGBQUAD

==

BITMAPINFOHEADER (3.0)

typedef struct tagBITMAPINFOHEADER { /* bmih */

 DWORD biSize;

 LONG biWidth;

 LONG biHeight;

 WORD biPlanes;

 WORD biBitCount;

 DWORD biCompression;

 DWORD biSizeImage;

 LONG biXPelsPerMeter;

 LONG biYPelsPerMeter;

 DWORD biClrUsed;

 DWORD biClrImportant;

} BITMAPINFOHEADER;

The BITMAPINFOHEADER structure contains information about the dimensions and

color format of a Windows 3.0 or later device-independent bitmap (DIB).

Member

Description

biSize

Specifies the number of bytes required by the

BITMAPINFOHEADER structure.

biWidth

Specifies the width of the bitmap, in pixels.

biHeight
Specifies the height of the bitmap, in pixels.

biPlanes
Specifies the number of planes for the target device. This

member must be set to 1.

biBitCount
Specifies the number of bits per pixel. This value must be 1,

4, 8, or 24.

biCompression
Specifies the type of compression for a compressed bitmap. It

can be one of the following values:

Value

Meaning

BI_RGB

Specifies that the bitmap is not compressed.

BI_RLE8

Specifies a run-length encoded format for bitmaps with 8 bits

per pixel. The compression format is a 2-byte format consisting of a count

byte followed by a byte containing a color index. For more information, see

the following Comments section.

BI_RLE4

Specifies a run-length encoded format for bitmaps with 4 bits

per pixel. The compression format is a 2-byte format consisting of a count

byte followed by two word-length color indexes. For more information, see

the following Comments section.

biSizeImage
Specifies the size, in bytes, of the image. It is valid to

set this member to zero if the bitmap is in the BI_RGB format.

biXPelsPerMeter
Specifies the horizontal resolution, in pixels per meter, of

the target device for the bitmap. An application can use this value to select

a bitmap from a resource group that best matches the characteristics of the

current device.

biYPelsPerMeter
Specifies the vertical resolution, in pixels per meter, of

the target device for the bitmap.

biClrUsed
Specifies the number of color indexes in the color table

actually used by the bitmap. If this value is zero, the bitmap uses the

maximum number of colors corresponding to the value of the biBitCount member.

For more information on the maximum sizes of the color table, see the

description of the BITMAPINFO structure earlier in this topic.

If the biClrUsed member is nonzero, it specifies the actual number of colors

that the graphics engine or device driver will access if the biBitCount

member is less than 24. If biBitCount is set to 24, biClrUsed specifies the

size of the reference color table used to optimize performance of Windows

color palettes. If the bitmap is a packed bitmap (that is, a bitmap in which

the bitmap array immediately follows the BITMAPINFO header and which is

referenced by a single pointer), the biClrUsed member must be set to zero or

to the actual size of the color table.

biClrImportant
Specifies the number of color indexes that are considered

important for displaying the bitmap. If this value is zero, all colors are

important.

Comments

The BITMAPINFO structure combines the BITMAPINFOHEADER structure and a color

table to provide a complete definition of the dimensions and colors of a

Windows 3.0 or later DIB. For more information about specifying a Windows 3.0

DIB, see the description of the BITMAPINFO structure.

An application should use the information stored in the biSize member to

locate the color table in a BITMAPINFO structure as follows:

pColor = ((LPSTR) pBitmapInfo + (WORD) (pBitmapInfo->bmiHeader.biSize))

Windows supports formats for compressing bitmaps that define their colors

with 8 bits per pixel and with 4 bits per pixel. Compression reduces the disk

and memory storage required for the bitmap. The following paragraphs describe

these formats.

BI_RLE8

When the biCompression member is set to BI_RLE8, the bitmap is compressed

using a run-length encoding format for an 8-bit bitmap. This format may be

compressed in either of two modes: encoded and absolute. Both modes can occur

anywhere throughout a single bitmap.

Encoded mode consists of two bytes: the first byte specifies the number of

consecutive pixels to be drawn using the color index contained in the second

byte. In addition, the first byte of the pair can be set to zero to indicate

an escape that denotes an end of line, end of bitmap, or a delta. The

interpretation of the escape depends on the value of the second byte of the

pair. The following list shows the meaning of the second byte:

Value
Meaning

0
End of line.

1
End of bitmap.

2
Delta. The two bytes following the escape contain unsigned values

indicating the horizontal and vertical offset of the next pixel from the

current position.

Absolute mode is signaled by the first byte set to zero and the second byte

set to a value between 0x03 and 0xFF. In absolute mode, the second byte

represents the number of bytes that follow, each of which contains the color

index of a single pixel. When the second byte is set to 2 or less, the escape

has the same meaning as in encoded mode. In absolute mode, each run must be

aligned on a word boundary. The following example shows the hexadecimal

values of an 8-bit compressed bitmap:

03 04 05 06 00 03 45 56 67 00 02 78 00 02 05 01

02 78 00 00 09 1E 00 01

This bitmap would expand as follows (two-digit values represent a color index

for a single pixel):

04 04 04

06 06 06 06 06

45 56 67

78 78

move current position 5 right and 1 down

78 78

end of line

1E 1E 1E 1E 1E 1E 1E 1E 1E

end of RLE bitmap

BI_RLE4

When the biCompression member is set to BI_RLE4, the bitmap is compressed

using a run-length encoding (RLE) format for a 4-bit bitmap, which also uses

encoded and absolute modes. In encoded mode, the first byte of the pair

contains the number of pixels to be drawn using the color indexes in the

second byte. The second byte contains two color indexes, one in its

high-order nibble (that is, its low-order four bits) and one in its low-order

nibble. The first of the pixels is drawn using the color specified by the

high-order nibble, the second is drawn using the color in the low-order

nibble, the third is drawn with the color in the high-order nibble, and so

on, until all the pixels specified by the first byte have been drawn. In

absolute mode, the first byte contains zero, the second byte contains the

number of color indexes that follow, and subsequent bytes contain color

indexes in their high- and low-order nibbles, one color index for each pixel.

In absolute mode, each run must be aligned on a word boundary. The

end-of-line, end-of-bitmap, and delta escapes also apply to BI_RLE4.

The following example shows the hexadecimal values of a 4-bit compressed

bitmap:

03 04 05 06 00 06 45 56 67 00 04 78 00 02 05 01

04 78 00 00 09 1E 00 01

This bitmap would expand as follows (single-digit values represent a color

index for a single pixel):

0 4 0

0 6 0 6 0

4 5 5 6 6 7

7 8 7 8

move current position 5 right and 1 down

7 8 7 8

end of line

1 E 1 E 1 E 1 E 1

end of RLE bitmap

See Also

BITMAPINFO

==

RGBQUAD (3.0)

typedef struct tagRGBQUAD { /* rgbq */

 BYTE rgbBlue;

 BYTE rgbGreen;

 BYTE rgbRed;

 BYTE rgbReserved;

} RGBQUAD;

The RGBQUAD structure describes a color consisting of relative intensities of

red, green, and blue. The bmiColors member of the BITMAPINFO structure

consists of an array of RGBQUAD structures.

Member

Description

rgbBlue

Specifies the intensity of blue in the color.

rgbGreen
Specifies the intensity of green in the color.

rgbRed

Specifies the intensity of red in the color.

rgbReserved
Not used; must be set to zero.

See Also

BITMAPINFO

==

RGB (2.x)

COLORREF RGB(cRed, cGreen, cBlue)

BYTE cRed;
/* red component of color
*/

BYTE cGreen;
/* green component of color
*/

BYTE cBlue;
/* blue component of color
*/

The RGB macro selects an RGB color based on the parameters supplied and the

color capabilities of the output device.

Parameter
Description

cRed
Specifies the intensity of the red color field.

cGreen
Specifies the intensity of the green color field.

cBlue
Specifies the intensity of the blue color field.

Returns

The return value specifies the resultant RGB color.

Comments

The intensity for each argument can range from 0 through 255. If all three

intensities are specified as zero, the result is black. If all three

intensities are specified as 255, the result is white.

Comments

The RGB macro is defined in WINDOWS.H as follows:

#define RGB(r,g,b) ((COLORREF)(((BYTE)(r)|((WORD)(g)<<8))| \

 (((DWORD)(BYTE)(b))<<16)))

See Also

GetBValue, GetGValue, GetRValue, PALETTEINDEX, PALETTERGB

==

BITMAPCOREINFO (3.0)

typedef struct tagBITMAPCOREINFO { /* bmci */

 BITMAPCOREHEADER bmciHeader;

 RGBTRIPLE bmciColors[1];

} BITMAPCOREINFO;

The BITMAPCOREINFO structure fully defines the dimensions and color

information for a device-independent bitmap (DIB). Windows applications

should use the BITMAPINFO structure instead of BITMAPCOREINFO whenever

possible.

Member

Description

bmciHeader
Specifies a BITMAPCOREHEADER structure that contains

information about the dimensions and color format of a DIB.

bmciColors
Specifies an array of RGBTRIPLE structures that define the

colors in the bitmap.

Comments

The BITMAPCOREINFO structure describes the dimensions and colors of a bitmap.

It is followed immediately in memory by an array of bytes which define the

pixels of the bitmap. The bits in the array are packed together, but each

scan line must be zero-padded to end on a LONG boundary. Segment boundaries,

however, can appear anywhere in the bitmap. The origin of the bitmap is the

lower-left corner.

The bcBitCount member of the BITMAPCOREHEADER structure determines the number

of bits that define each pixel and the maximum number of colors in the

bitmap. This member may be set to any of the following values:

Value
Meaning

1
The bitmap is monochrome, and the bmciColors member must contain two

entries. Each bit in the bitmap array represents a pixel. If the bit is

clear, the pixel is displayed with the color of the first entry in the

bmciColors table. If the bit is set, the pixel has the color of the second

entry in the table.

4
The bitmap has a maximum of 16 colors, and the bmciColors member

contains 16 entries. Each pixel in the bitmap is represented by a four-bit

index into the color table.

For example, if the first byte in the bitmap is 0x1F, the byte represents two

pixels. The first pixel contains the color in the second table entry, and the

second pixel contains the color in the sixteenth table entry.

8
The bitmap has a maximum of 256 colors, and the bmciColors member

contains 256 entries. In this case, each byte in the array represents a

single pixel.

24
The bitmap has a maximum of 2^24 colors. The bmciColors member is

NULL, and each 3-byte sequence in the bitmap array represents the relative

intensities of red, green, and blue, respectively, of a pixel.

The colors in the bmciColors table should appear in order of importance.

Alternatively, for functions that use DIBs, the bmciColors member can be an

array of 16-bit unsigned integers that specify an index into the currently

realized logical palette instead of explicit RGB values. In this case, an

application using the bitmap must call DIB functions with the wUsage

parameter set to DIB_PAL_COLORS.

Note:
The bmciColors member should not contain palette indexes if the

bitmap is to be stored in a file or transferred to another application.

Unless the application uses the bitmap exclusively and under its complete

control, the bitmap color table should contain explicit RGB values.

See Also

BITMAPINFO, BITMAPCOREHEADER, RGBTRIPLE

==

BITMAPCOREHEADER (3.0)

typedef struct tagBITMAPCOREHEADER { /* bmch */

 DWORD bcSize;

 short bcWidth;

 short bcHeight;

 WORD bcPlanes;

 WORD bcBitCount;

} BITMAPCOREHEADER;

The BITMAPCOREHEADER structure contains information about the dimensions and

color format of a device-independent bitmap (DIB). Windows applications

should use the BITMAPINFOHEADER structure instead of BITMAPCOREHEADER

whenever possible.

Member

Description

bcSize

Specifies the number of bytes required by the

BITMAPCOREHEADER structure.

bcWidth

Specifies the width of the bitmap, in pixels.

bcHeight
Specifies the height of the bitmap, in pixels.

bcPlanes
Specifies the number of planes for the target device. This

member must be set to 1.

bcBitCount
Specifies the number of bits per pixel. This value must be 1,

4, 8, or 24.

Comments

The BITMAPCOREINFO structure combines the BITMAPCOREHEADER structure and a

color table to provide a complete definition of the dimensions and colors of

a DIB. See the description of the BITMAPCOREINFO structure for more

information about specifying a DIB.

An application should use the information stored in the bcSize member to

locate the color table in a BITMAPCOREINFO structure with a method such as

the following:

lpColor = ((LPSTR) pBitmapCoreInfo + (UINT) (pBitmapCoreInfo->bcSize))

See Also

BITMAPCOREINFO, BITMAPINFOHEADER, BITMAPINFOHEADER

===

RGBTRIPLE (3.0)

typedef struct tagRGBTRIPLE { /* rgbt */

 BYTE rgbtBlue;

 BYTE rgbtGreen;

 BYTE rgbtRed;

} RGBTRIPLE;

The RGBTRIPLE structure describes a color consisting of relative intensities

of red, green, and blue. The bmciColors member of the BITMAPCOREINFO

structure consists of an array of RGBTRIPLE structures. Windows applications

should use the BITMAPINFO structure instead of BITMAPCOREINFO whenever

possible. The BITMAPINFO structure uses an RGBQUAD structure instead of the

RGBTRIPLE structure.

Member
Description

rgbtBlue
Specifies the intensity of blue in the color.

rgbtGreen
Specifies the intensity of green in the color.

rgbtRed

Specifies the intensity of red in the color.

See Also

BITMAPCOREINFO, BITMAPINFO, RGBQUAD

==

